当前位置: > 若函数f(x)=(1-x^2)(x^2+ax+b)的图像关于直线x=-2对称,求f(x)的最大值...
题目
若函数f(x)=(1-x^2)(x^2+ax+b)的图像关于直线x=-2对称,求f(x)的最大值

提问时间:2020-10-13

答案
数理答疑团为您解答,希望对你有所帮助.
(x)=(1-x^2)(x^2+ax+b) 得:f(1)=0,f(-1)=0,
图像关于x=-2对称,从而可知:f(-5)=0,f(-3)=0,
即有:x²+ax+b=(x+5)(x+3)
所以:
f(x)=(1-x)(1+x)(x+3)(x+5)
=[3-(x+2)][3+(x+2)][(x+2)-1][(x+2)+1]
=[9-(x+2)²][(x+2)²-1]
=16-[(x+2)²-5]² ≤16
所以最大值是16.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.