当前位置: > 已知函数f(x)=x2+3(m+1)x+n的零点是1和2,求函数y=logn(mx+1)的零点....
题目
已知函数f(x)=x2+3(m+1)x+n的零点是1和2,求函数y=logn(mx+1)的零点.

提问时间:2020-10-13

答案
∵f(x)=x2+3(m+1)x+n的零点是1和2
∴f(1)=12+3(m+1)+n=0,即3m+n+4=0 ①,
f(2)=22+6(m+1)+n=0,即6m+n+10=0 ②,
解得:m=-2,n=2
故函数y=logn(mx+1)的解析式可化为:
y=log2(-2x+1)
令y=log2(-2x+1)=0,则x=0
∴函数y=logn(mx+1)的零点是0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.