当前位置: > 设函数f(x)=|x|x+bx+c,给出四个命题,正确的序号是:...
题目
设函数f(x)=|x|x+bx+c,给出四个命题,正确的序号是:
① C=0时,有F(-X)=-F(X)成立
②b=0 c>0时,f(x)只有一个实数根
③ y=f(x)的图像关于点(0,c)对称
④方程f(x)=0之多有两个实数根

提问时间:2020-10-13

答案
1,2,3
第一个
C=0所以f(x)=|x|x+bx
f(-x)=-|x|x-bx=-f(x)
所以第一个成立.
第二个
b=0,c>0所以f(x)=|x|x+c
当x〉0时
f(x)=|x|x+c=x^2+c>0
所以f(x)=0没有正根
当x2c-y,x->-x
左边变成2c-y=2c-(|x|x+bx+c)=-|x|x-bx+c
右边变成 -|x|x-bx+c
注意左边=右边所以y=f(x)的图像关于点(0,c)对称
第四个,不成立.举一个反例
b=-1 c=0时f(x)=0之多有三个实数根
x=1,0,-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.