当前位置: > 已知a>b>0,a+b>1,证明(a^2+b^2)/(a-b)大于或等于2倍根号2...
题目
已知a>b>0,a+b>1,证明(a^2+b^2)/(a-b)大于或等于2倍根号2

提问时间:2020-10-13

答案
当a2^(1/2)时,(a^2+b^2)/(a-b)>2*2^(1/2),
证明将原式展开变为求证
(a-2^(1/2))^2+(b+2^(1/2))^2大于或等于4,
由于(a-2^(1/2))^2+(b+2^(1/2))^2大于或等于2*(a-2^(1/2))*(b+2^(1/2))
或2*(2^(1/2)-a)*(b+2^(1/2)).注意a-2^(1/2)的大小会影响不等式正负符号
进而求证2*(a-2^(1/2))*(b+2^(1/2)与4的大小.式子展开后根据条件a>b>0,会得出前述结论
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.