题目
在正方体ABCD-A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.
求证:A1O⊥平面GBD.
求证:A1O⊥平面GBD.
提问时间:2020-10-13
答案
证明:连接GO.
∵DB⊥A1A,DB⊥AC,A1A∩AC=A,
∴DB⊥平面A1ACC1.
又A1O⊂平面A1ACC1,∴A1O⊥DB.
在矩形A1ACC1中,tan∠AA1O=
∵DB⊥A1A,DB⊥AC,A1A∩AC=A,
∴DB⊥平面A1ACC1.
又A1O⊂平面A1ACC1,∴A1O⊥DB.
在矩形A1ACC1中,tan∠AA1O=
|