当前位置: > 求函数f(x)=x²-4ax+2a+6(a属于R)在区间[-1,3]上的最小值...
题目
求函数f(x)=x²-4ax+2a+6(a属于R)在区间[-1,3]上的最小值

提问时间:2020-10-13

答案
开口向上,对称轴为x=2a的抛物线,定义域区间为[-1,3]
(1)对称轴在区间的左边,则函数在该区间上是递增的,则x=-1时,有最小值;
即:2a3/2时,最小值为f(3)=-10a+15;

祝你开心!希望能帮到你,如果不懂,请Hi我,祝学习进步!O(∩_∩)O
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.