题目
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明(1):a1能由a2,a3线性表示 (2):a4不能由a1,a2,a3线示
提问时间:2020-10-13
答案
(1)向量组a2,a3,a4线性无关,说明a2,a3,也线性无关;
又因为向量组a1,a2,a3线性相关,所以a1能由a2,a3线性表示
(2)假如a4能由a1,a2,a3线性表示,则由于a1能由a2,a3线性表示
得到a4能由a2,a3线性表示,从而a2,a3,a4线性相关,与已知矛盾,
所以a4不能由a1,a2,a3线性表示
如果基础不太好,可以看看下面的答案,关于第一个问的,我引用的
由已知说明向量组a1,a2,a3,a4线性相关;
即存在不全为0的4个数k1,k2,k3,k4使得k1*a1+k2*a2+k3*a3+k4*a4=0(k1,k2,k3,k4为系数)
又因为a4不能由a1,a2,a3线性表示,所以不存在如下的等式关系:
a4=c1*a1+c2*a2+c3*a3(c1,c2,c3为系数)
由上面第一个等式知:k1*a1+k2*a2+k3*a3+k4*a4=0
由上面第二条件知:a4=c1*a1+c2*a2+c3*a3(不成立)
从第一个等式中知要使第二个条件成立,只有k4=0;如果k4≠0的话,那么经 过移项,可变成a4=c1*a1+c2*a2+c3*a3,这就产生了矛盾.
故在第1式中只有k4=0;
这样就有k1*a1+k2*a2+k3*a3=0;(k1,k2,k3不全为0),故向量组a1a2a3线性相关
又因为向量组a1,a2,a3线性相关,所以a1能由a2,a3线性表示
(2)假如a4能由a1,a2,a3线性表示,则由于a1能由a2,a3线性表示
得到a4能由a2,a3线性表示,从而a2,a3,a4线性相关,与已知矛盾,
所以a4不能由a1,a2,a3线性表示
如果基础不太好,可以看看下面的答案,关于第一个问的,我引用的
由已知说明向量组a1,a2,a3,a4线性相关;
即存在不全为0的4个数k1,k2,k3,k4使得k1*a1+k2*a2+k3*a3+k4*a4=0(k1,k2,k3,k4为系数)
又因为a4不能由a1,a2,a3线性表示,所以不存在如下的等式关系:
a4=c1*a1+c2*a2+c3*a3(c1,c2,c3为系数)
由上面第一个等式知:k1*a1+k2*a2+k3*a3+k4*a4=0
由上面第二条件知:a4=c1*a1+c2*a2+c3*a3(不成立)
从第一个等式中知要使第二个条件成立,只有k4=0;如果k4≠0的话,那么经 过移项,可变成a4=c1*a1+c2*a2+c3*a3,这就产生了矛盾.
故在第1式中只有k4=0;
这样就有k1*a1+k2*a2+k3*a3=0;(k1,k2,k3不全为0),故向量组a1a2a3线性相关
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1你能找到规律填一填吗? 3,12,21,30,39,48,57… (1)第12个数是_, (2)912是第_个数.
- 2水浒传读后感450字
- 3主谓宾定状补语一般是什么词性?
- 4女娲造了人类,人类怎样生活
- 5已知a+b=-3,a2b+ab2=-30,则a2-ab+b2+11=_.
- 6My father often newspapers after supper.
- 7the red book is mine划线部分提问 (划线的是red)
- 8设a∈R,函数f(x)=(x^2-ax-a)e^x拜托各位大神
- 9100g30%的食盐溶液稀释到15%,需要加水多少毫升
- 10为什么说信息是构成世界的三大要素之一?另外的两大要素是什么?
热门考点