当前位置: > 已知函数f(x)的定义域为R,并对一切实数x,都满足f(2+x)=f(2-x)...
题目
已知函数f(x)的定义域为R,并对一切实数x,都满足f(2+x)=f(2-x)
若f(x)又是偶函数,且x∈[0,2]时,f(x)=2x-1,求x∈[-4,0]时的f(x)的表达式.

提问时间:2020-10-13

答案
令2<=t<=4,且t=x+2,则0<=x<=2,
f(t)=f(2+x)=f(2-x),0<=(2-x)<=2
所以f(t)=f(2-x)=2(2-x)-1,
=3-2x(又x=t-2)
=-2t+7.(2<=t<=4)
因为f(x)是偶函数.可令-4<=a<-2,则
2<=-a<=4,f(a)=f(-a)=2a+7,(-4<=a<-2)
令-2<=k<=0,0<=-k<2,
f(k)=f(-k)=-2k-1,(-2<=k<=0)
综上,f(x)=2x+7,(-4<=x<-2)
f(x)=-2x-1,(-2<=x<=0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.