当前位置: > 设函数f(x)=|x-a|-ax,其中a>0为常数.,试求函数f(x)存在最小值的充要条件,并求出相应的最小值....
题目
设函数f(x)=|x-a|-ax,其中a>0为常数.,试求函数f(x)存在最小值的充要条件,并求出相应的最小值.

提问时间:2020-10-13

答案
由条件得:f(x)=
(1−a)x−a当x≥a时
−(1+a)x+a当x<a时
,(4分)
∵a>0,
∴-(1+a)<0,f(x)在(-∞,a)上是减函数.
如果函数f(x)存在最小值,
则f(x)在[a,+∞)上是增函数或常数.
∴1-a≥0,
得a≤1,
又a>0,∴0<a≤1.(5分)
反之,当0<a≤1时,
(1-a)≥0,∴f(x)在f[a,+∞)上是增函数或常数.
-(1+a)<0,∴f(x)在(-∞,a)上是减函数.
∴f(x)存在最小值f(a).
综合上述f(x)存在最小值的充要条件是0<a≤1,此时f(x)min=-a2(3分)
函数可变为f(x)=
(1−a)x−a当x≥a时
−(1+a)x+a当x<a时
,运用单调性据函数的形式判断出-(1+a)<0,结合a>0得出答案.

函数的最值及其几何意义.

本题考查函数的最值及其几何意义,解不等式,分类讨论的思想,注意根据函数的形式判断出函数中参数的取值范围.难度较高.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.