题目
如图,p点是反比例函数y=k1/x(k1>o,x>0)图像上一动点,过p点作x轴,y轴的垂线,分别交x轴,y轴于AB两点,交
反比例函数y=k2/x(k2
反比例函数y=k2/x(k2
提问时间:2020-10-13
答案
(1)∵P是点P是反比例函数 y=k1x(k1>0,x>0)图象上一动点,∴S矩形PBOA=k1,
∵E、F分别是反比例函数 y=k2x(k2<0且|k2|<k1,)的图象上两点,
∴S△OBF=S△AOE= 12|k2|,
∴四边形PEOF的面积S1=S矩形PBOA+S△OBF+S△AOE=k1+|k2|,
∵k2<0,
∴四边形PEOF的面积S1=S矩形PBOA+S△OBF+S△AOE=k1+|k2|=k1-k2.
(2)①∵PE⊥x轴,PF⊥y轴可知,P、E两点的横坐标相同,P、F两点的纵坐标相同,
∴E、F两点的坐标分别为E(2,k22),F( k23,3);
②∵P(2,3)在函数y= k1x的图象上,
∴k1=6,
∵E、F两点的坐标分别为E(2,k22),F( k23,3);
∴PE=3- k22,PF=2- k23,
∴S△PEF= 12(3- k22)(2- k23)= (6-k2)212,
∴S△OEF=(k1-k2)- (6-k2)212
=(6-k2)- (6-k2)212
= 36-k2212= 83,
∵k2<0,
∴k2=-2.
∴反比例函数 y=k2x的解析式为y=- 2x.
∵E、F分别是反比例函数 y=k2x(k2<0且|k2|<k1,)的图象上两点,
∴S△OBF=S△AOE= 12|k2|,
∴四边形PEOF的面积S1=S矩形PBOA+S△OBF+S△AOE=k1+|k2|,
∵k2<0,
∴四边形PEOF的面积S1=S矩形PBOA+S△OBF+S△AOE=k1+|k2|=k1-k2.
(2)①∵PE⊥x轴,PF⊥y轴可知,P、E两点的横坐标相同,P、F两点的纵坐标相同,
∴E、F两点的坐标分别为E(2,k22),F( k23,3);
②∵P(2,3)在函数y= k1x的图象上,
∴k1=6,
∵E、F两点的坐标分别为E(2,k22),F( k23,3);
∴PE=3- k22,PF=2- k23,
∴S△PEF= 12(3- k22)(2- k23)= (6-k2)212,
∴S△OEF=(k1-k2)- (6-k2)212
=(6-k2)- (6-k2)212
= 36-k2212= 83,
∵k2<0,
∴k2=-2.
∴反比例函数 y=k2x的解析式为y=- 2x.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1将白磷放在80度的热水中,白磷嫩顾不能燃烧起来
- 2(-8×10的8次方)÷(1.6×10的四次方)
- 3我妈妈正在洗碗用英语怎么说?
- 4古代勤奋学习的例子
- 5与椭圆X平方+4Y平方=64有共同焦点,且一跳渐近线为X+√3Y=0的双曲线方程
- 6I see this note. What should I do?
- 7已知空间三点坐标,点到直线的距离计算公式
- 8某种产品的产量,平均每年比上一年增长12.5%,求经过六年产量比原来增长的百分数
- 9李白《早发白帝城》一诗中,可以联系到一些物理概念和规律.请写出其中的一个诗句?跟这句联系的物理知识
- 10一根圆柱形水管,量得它的内直径是20厘米,水流过水管的速度是每秒4米.这根水管每秒可流过多少立方米的水?1小时可流过多少立方米的水?
热门考点