题目
设a,b,c为不全相等的实数,x=a^2-bc,y=b^2-ac,z=c^2-ab,证明x,y,z至少有一大于0
提问时间:2020-10-13
答案
反证法:
假设x,y,z都小于0
则:
a^2-bc<0
b^2-ac<0
c^2-ab<0
三个式子相加得到a^2+b^2+c^2-ac-bc-ab<0
但这是不可能的:因为a^2+b^2+c^2-ac-bc-ab=1/2(2a^2+2b^2+2c^2-2ac-2bc-2ab)=1/2[(a^2-2ac+c^2)+(b^2-2bc+c^2)+(a^2-2ab+b^2)]=1/2[(a-c)^2+(b-c)^2+(a-b)^2]>=0
得到矛盾,假设不成立.
所以x,y,z至少有一大于0
假设x,y,z都小于0
则:
a^2-bc<0
b^2-ac<0
c^2-ab<0
三个式子相加得到a^2+b^2+c^2-ac-bc-ab<0
但这是不可能的:因为a^2+b^2+c^2-ac-bc-ab=1/2(2a^2+2b^2+2c^2-2ac-2bc-2ab)=1/2[(a^2-2ac+c^2)+(b^2-2bc+c^2)+(a^2-2ab+b^2)]=1/2[(a-c)^2+(b-c)^2+(a-b)^2]>=0
得到矛盾,假设不成立.
所以x,y,z至少有一大于0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点