当前位置: > 若f(x)在[a,b]上连续,a...
题目
若f(x)在[a,b]上连续,a2),则在(x1,xn)内至少有一点u,使f(u)=[f(x1)+f(x2)+……f(xn)]/n,如何证明?

提问时间:2020-10-13

答案
f(x)在[a,b]上连续,则在[x1,xn]上连续,则在[x1,xn]上必能取得最大和最小值,M和m
设f(c)=M,f(d)=m 其中 c,d在x1,和x2之间(有可能在端点)
如果M=m,说明f(x)是常数函数,结论是显然的.
如果M≠m,则c≠d.
这里有)[f(x1)+f(x2)+……f(xn)]/n <= (M+M+...M)/n=M=f(c) (右边的每一个放大成M)
同样 [f(x1)+f(x2)+……f(xn)]/n >= m ,由于m,M不等,所以两个不等式等号不会同时成立
如果两个等号都不成立,由介值定理,存在p在c,d之间(这里可以不包含端点),c,d又在[x1,xn]之间.
x1如果有一个等号成立(这里不妨设第一个等号成立)
那么必有 f(x2)=M,而x1故命题成立
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.