题目
如图,P 是△ABC所在平面外一点,且PA⊥平面ABC.若O和Q分别是△ABC和△PBC的垂心,试证:OQ⊥平面PBC.
提问时间:2020-10-12
答案
证明:∵O是△ABC的垂心,∴BC⊥AE.∵PA⊥平面ABC,根据三垂线定理得BC⊥PE.
∴BC⊥平面PAE.∵Q是△PBC的垂心,故Q在PE上,则OQ⊂平面PAE,∴OQ⊥BC.
∵PA⊥平面ABC,BF⊂平面ABC,∴BF⊥PA,又∵O是△ABC的垂心,
∴BF⊥AC,故BF⊥平面PAC.因而FM是BM在平面PAC内的射影.
因为BM⊥PC,据三垂线定理的逆定理,FM⊥PC,
从而PC⊥平面BFM.又OQ⊂平面BFM,所以OQ⊥PC.
综上知OQ⊥BC,OQ⊥PC,
所以OQ⊥平面PBC.
∴BC⊥平面PAE.∵Q是△PBC的垂心,故Q在PE上,则OQ⊂平面PAE,∴OQ⊥BC.
∵PA⊥平面ABC,BF⊂平面ABC,∴BF⊥PA,又∵O是△ABC的垂心,
∴BF⊥AC,故BF⊥平面PAC.因而FM是BM在平面PAC内的射影.
因为BM⊥PC,据三垂线定理的逆定理,FM⊥PC,
从而PC⊥平面BFM.又OQ⊂平面BFM,所以OQ⊥PC.
综上知OQ⊥BC,OQ⊥PC,
所以OQ⊥平面PBC.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1Are there any___ in the photo?Yes,there are.A fish B pork C beef
- 2设集合A上的关系R,S是等价关系,证明R∩S也是A上的等价关系,并举例说明R∪S不一定是等价关系
- 3已知圆的方程为(x+1)2+(y-4)2=9,过P(2,0)作该圆的一条切线,切点为A,则PA的长度为
- 4电感电路中,为什么当交流电流减弱时,自感电流跟交流电流方向相同?
- 5我国公民道德建设要( )为重点 A.遵纪守法 B.诚实守信 C、勤劳勇敢 D、明礼诚信
- 6数学--------数列的 很简单-------再线等啊
- 7y=1/(x+1)^2的函数图象怎么画?
- 8a 1 0 0 -1 b 1 0 0 -1 c 1 0 0 -1 d 行列式怎么求?
- 9Having too much____(糖) is bad for our health
- 10问几个数学题,麻烦写出公式!