当前位置: > 已知A-E是n阶正定矩阵,证明E-A^(-1)也是正定矩阵....
题目
已知A-E是n阶正定矩阵,证明E-A^(-1)也是正定矩阵.

提问时间:2020-10-12

答案
(A-E)(A-E)T=AAT-AT-A+E=EAAT=A+ATATA=A+AT.(1)由题目要证明的可知A可逆(1)两边取逆矩阵A^(-1)(AT)(-1)=A^(-1)+[A^(-1)]T..(2)[E-A^(-1)][E-A^(-1)]T=E-A^(-1)-[A^(-1)]T+A^(-1)(AT)(-1)带入(2)A^(-1)(AT)(-1)=E所...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.