题目
如图,△ABC为等腰三角形,△BDC和△ACE分别为等边三角形,AE与BD相交于点F,连接CF并延长,交AB于点G.求证:G为AB的中点
提问时间:2020-10-12
答案
证明;∵ca=cb
∴∠cab=∠cba
∵△aec和△bcd为等边三角形
∴∠cae=∠cbd ∠fag=∠fbg
在三角形acf和△cbf中
fa=fb
ac=bc
cf=cf
所以△afc≌三角形ceb
所以∠acf=∠bcf
所以ag=bg 三线合一
g为ab的中点
∴∠cab=∠cba
∵△aec和△bcd为等边三角形
∴∠cae=∠cbd ∠fag=∠fbg
在三角形acf和△cbf中
fa=fb
ac=bc
cf=cf
所以△afc≌三角形ceb
所以∠acf=∠bcf
所以ag=bg 三线合一
g为ab的中点
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点