当前位置: > 如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点,请判断四边形MENF是什么特殊四边形,并证明你的结论....
题目
如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点,请判断四边形MENF是什么特殊四边形,并证明你的结论.

提问时间:2020-10-12

答案
答:四边形MENF是菱形.
证明:∵N、E、F分别是BC、BM、CM的中点,
∴NE∥CM,NE=
1
2
CM,MF=
1
2
CM,
∴NE=FM,NE∥FM,
∴四边形MENF是平行四边形,
:∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵M为AD中点,
∴AM=DM,
在△ABM和△DCM,
AM=DM
∠A=∠D
AB=CD

∴△ABM≌△DCM(SAS);
∴BM=CM,
∵E、F分别是BM、CM的中点,
∴ME=MF,
∴平行四边形MENF是菱形.
根据三角形中位线定理求出NE∥MF,NE=MF,得出平行四边形,求出BM=CM,推出ME=MF,根据菱形的判定推出即可;

菱形的判定;矩形的性质.

本题考查了正三角形的中位线,矩形的性质,全等三角形的性质和判定,菱形、平行四边形、正方形的判定的应用,主要考查学生的推理能力.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.