当前位置: > 已知定义域为R的函数f(x)=-2^x+b/2^(x+1)+a是奇函数解不等式f(x-1)+f(2x+3)...
题目
已知定义域为R的函数f(x)=-2^x+b/2^(x+1)+a是奇函数解不等式f(x-1)+f(2x+3)

提问时间:2020-10-12

答案
因为 f(x)是奇函数,所以f(0)=0 (这不是说特殊值哦,而是根据奇函数的定义得知的)
即(b-1)/(a+2)=0
则 b=1
因为 f(x)是奇函数,所以f(-1)=-f(1)
即(b-1/2)/(a+1)=-(b-2)/(a+4)
1/[2(a+1)]=1/(a+4)
2(a+1)=a+4
则a=2
综上:a=2,b=1
或者用下面的方法
对R上的奇函数来说,f(0)=0,即-1+b=0,b=1.
F(x)=(-2^x+1)/(2^(x+1)+a)
又有F(-x)=- F(x)
(-2^(-x)+1)/(2^(-x+1)+a)= -(-2^x+1)/(2^(x+1)+a)……左边式子的分子分母同乘以2^x
(-1+2^x)/(2+a•2^x)= (2^x-1)/(2^(x+1)+a)
所以2+a•2^x=2^(x+1)+a
a(2^x-1)= 2^(x+1)-2,
a(2^x-1)= 2(2^x-1)
所以a=2.
所以 f(x) = (-2^x+1)/[2^(x+1)+2]= (-2^x+1)/{2[2^x + 1]}
= (-2^x - 1 + 2)/{2[2^x + 1]}
= -1/2 + 1/(2^x + 1)
f(x-1)+f(2x+3)=-1/2+1/(2^(x-1)+1)-1/2+1/(2^(2x+3)+1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.