当前位置: > 已知圆C:(x-1)^2 +(y-2)^2 =25及直线l:(2m+1)x +(m+1)y =7m+4(m∈R)...
题目
已知圆C:(x-1)^2 +(y-2)^2 =25及直线l:(2m+1)x +(m+1)y =7m+4(m∈R)
(1)证明:不论m取何实数,直线l与圆C恒相交
(2)求直线l与圆C所截得的弦长最短时直线l的方程
求详细解答

提问时间:2020-10-12

答案
(1)要证明恒相交,可以求直线有一个点恒在圆内.
∴要求出直线恒过一个定点
∵直线过一个定点,所以这个定点的X Y能使直线等式恒成立,
∴2mx+x+my+y=7m+4
∴m(2x+y)+(x+y)=7m+4
∴2x+y=7 x+y=4
所以定点为A (3,1)
∵A在圆C内
∴恒相交
(2)C(1,2)当直线l与AC直线相垂直的时候 弦长最短
AC的斜率为-0.5
所以 l的斜率为2
所以 -(2m+1)/(m+1)=2
m=-3/4
所以 y=2x-5
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.