当前位置: > 已知a,b,为常数,且an=3(n-1)次方-2a(n-1)(1)设bn=an/3的n次方-1/5,证明数列bn为等比数列.(2)求an...
题目
已知a,b,为常数,且an=3(n-1)次方-2a(n-1)(1)设bn=an/3的n次方-1/5,证明数列bn为等比数列.(2)求an

提问时间:2020-10-12

答案
an=3(n-1)次方-2a(n-1)
两边除以3^n
an/3^n=1/3-2a(n-1)/3^n=1/3-(2/3)a(n-1)/3^(n-1)
an/3^n-1/5=1/3-(2/3)a(n-1)/3^(n-1)-1/5=(-2/3)[a(n-1)/3^(n-1)-1/5]
即bn=(-2/3)b(n-1)
所以bn是等比数列
bn的公比q=-2/3
b1=a1/3^1-1/5
所以bn=(a1/3^1-1/5)*(-2/3)^(n-1)
an=3^n*(bn+1/5)
所以an=3^n*[(a1/3^1-1/5)*(-2/3)^(n-1)+1/5]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.