当前位置: > 关于级数敛散性的证明 证明级数 ((-1)^n )/((根号n)+(-1)^n)是发散的...
题目
关于级数敛散性的证明 证明级数 ((-1)^n )/((根号n)+(-1)^n)是发散的

提问时间:2020-10-12

答案
首先, 由Leibniz判别法, 可知级数∑(-1)^n/√n收敛.
两级数相减得∑(-1)^n·(1/√n-1/(√n+(-1)^n)) = ∑1/(√n(√n+(-1)^n)).
这是一个正项级数, 通项与1/n是等价无穷小, 由比较判别法知级数发散.
于是∑(-1)^n/(√n+(-1)^n))作为一个收敛级数与一个发散级数之差是发散的.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.