题目
如图,三角形ABD、三角形ACE、三角形BCF分别是以三角形ABC的边AB、AC、BC为边的等边三角形.
求证:四边形ADFE是平行四边形
求证:四边形ADFE是平行四边形
提问时间:2020-10-12
答案
证明:
∵等边△ABD,等边△BCF,等边△ACE
∴AD=AB,BC=CF,AE=CE,∠ABD=∠FBC=∠FCB=∠ACE=60
∵∠BCD=∠ABD-∠ABF,∠ABC=∠FBC-∠ABF
∴∠BCD=∠ABC
∴△ABC≌△DBF (SAS)
∴DF=AC
∴DF=AE
∵∠ACB=∠FCB+∠ACF,∠ECF=∠ACE+∠ACF
∴∠ACB=∠ECF
∴△ABC≌△ECF (SAS)
∴CE=AB
∴CE=AD
∴平行四边形ADFE (两组对边相等)
∵等边△ABD,等边△BCF,等边△ACE
∴AD=AB,BC=CF,AE=CE,∠ABD=∠FBC=∠FCB=∠ACE=60
∵∠BCD=∠ABD-∠ABF,∠ABC=∠FBC-∠ABF
∴∠BCD=∠ABC
∴△ABC≌△DBF (SAS)
∴DF=AC
∴DF=AE
∵∠ACB=∠FCB+∠ACF,∠ECF=∠ACE+∠ACF
∴∠ACB=∠ECF
∴△ABC≌△ECF (SAS)
∴CE=AB
∴CE=AD
∴平行四边形ADFE (两组对边相等)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点