当前位置: > 用数学归纳法证明:(a1+a2+...+an)^2=a1^2+a2^2+...+an^2+2(a1a2+a2a3+...+a(n-1)an))...
题目
用数学归纳法证明:(a1+a2+...+an)^2=a1^2+a2^2+...+an^2+2(a1a2+a2a3+...+a(n-1)an))
n>=2且n属于N*

提问时间:2020-10-12

答案
这是个错误的命题.当n=2时成立,假设n=k时成立,即(a1+a2+...+ak)^2=a1^2+a2^2...+an^2+2(a1a2+a2a3+..a(k-1)ak.(a1+a2+...ak+a(k+1))=(a1+a2...ak)^2+a(k+1)^2+2(a1+a2+...+ak+a(k+1))=a1^2+a2^2+...+a(k+1)^2+2(a...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.