题目
已知函数f(x)=sin(2x-π/6)+cos^2 x
1、若f(a)=1,求sinacosa的值
2、求函数f(x)的单调增区间
1、若f(a)=1,求sinacosa的值
2、求函数f(x)的单调增区间
提问时间:2020-10-12
答案
解析:
f(x)=sin(2x-π/6)+cos² x
=sin2x*cos(π/6) - cos2x*sin(π/6) + (cos2x +1)/2
=sin2x*√3/2 - cos2x*1/2 + cos2x*1/2 +1/2
=(√3/2)*sin2x+1/2
(1) 若f(a)=1,那么:
(√3/2)*sin2a+1/2=1
(√3/2)*2sina*cosa=1/2
解得:sina*cosa=(√3)/6
(2)由上知:f(x)=(√3/2)*sin2x+1/2
可知当2kπ - π/2≤2x≤2kπ + π/2,即 kπ - π/4≤ x ≤kπ + π/4,k∈Z时,函数f(x)是增函数
所以函数f(x)的单调增区间为[kπ - π/4,kπ + π/4],k∈Z
f(x)=sin(2x-π/6)+cos² x
=sin2x*cos(π/6) - cos2x*sin(π/6) + (cos2x +1)/2
=sin2x*√3/2 - cos2x*1/2 + cos2x*1/2 +1/2
=(√3/2)*sin2x+1/2
(1) 若f(a)=1,那么:
(√3/2)*sin2a+1/2=1
(√3/2)*2sina*cosa=1/2
解得:sina*cosa=(√3)/6
(2)由上知:f(x)=(√3/2)*sin2x+1/2
可知当2kπ - π/2≤2x≤2kπ + π/2,即 kπ - π/4≤ x ≤kπ + π/4,k∈Z时,函数f(x)是增函数
所以函数f(x)的单调增区间为[kπ - π/4,kπ + π/4],k∈Z
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1一立方三七灰土用多少白灰
- 2平行四边形哪些性质,可用来描述所有平行四边形构成的集合?
- 3get down calm down knock down pick up辨析
- 4英语翻译
- 5They are going to help farmers ( ) their
- 6解答解方程计算题100道
- 7冥王星与其附近的另一星体卡戎可视为双星系统.质量比约为7:1,同时绕它们连线上某点O做匀速圆周运动.由此可知,冥王星绕O点运动的( ) A.轨道半径约为卡戎的17 B.角速度大小约为卡
- 8刘元卿 求文言文难词解读
- 9函数Y=F(x)关于点(A,B)对称,意味着什么?
- 10——Who is the oldest _____ your class?——Wu Dong is.A.of B.for C.in D.with