题目
如图所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.
提问时间:2020-10-12
答案
作CH⊥AB于H交AD于P,
∵在Rt△ABC中,AC=CB,∠ACB=90°,
∴∠CAB=∠CBA=45°.
∴∠HCB=90°-∠CBA=45°=∠CBA.
又∵BC中点为D,
∴CD=BD.
又∵CH⊥AB,
∴CH=AH=BH.
又∵∠PAH+∠APH=90°,∠PCF+∠CPF=90°,∠APH=∠CPF,
∴∠PAH=∠ECH.
在△APH与△CEH中
∠PAH=∠ECH,AH=CH,∠PHA=∠EHC,
∴△APH≌△CEH(ASA).
∴PH=EH,
又∵PC=CH-PH,BE=BH-HE,
∴CP=EB.
∵△ACB是等腰直角三角形,
∴∠B=45°,
即∠EBD=45°,
∵CH⊥AB,
∴∠PCD=45°=∠EBD,
在△PDC与△EDB中
PC=EB,∠PCD=∠EBD,DC=DB,
∴△PDC≌△EDB(SAS).
∴∠ADC=∠BDE.
∵在Rt△ABC中,AC=CB,∠ACB=90°,
∴∠CAB=∠CBA=45°.
∴∠HCB=90°-∠CBA=45°=∠CBA.
又∵BC中点为D,
∴CD=BD.
又∵CH⊥AB,
∴CH=AH=BH.
又∵∠PAH+∠APH=90°,∠PCF+∠CPF=90°,∠APH=∠CPF,
∴∠PAH=∠ECH.
在△APH与△CEH中
∠PAH=∠ECH,AH=CH,∠PHA=∠EHC,
∴△APH≌△CEH(ASA).
∴PH=EH,
又∵PC=CH-PH,BE=BH-HE,
∴CP=EB.
∵△ACB是等腰直角三角形,
∴∠B=45°,
即∠EBD=45°,
∵CH⊥AB,
∴∠PCD=45°=∠EBD,
在△PDC与△EDB中
PC=EB,∠PCD=∠EBD,DC=DB,
∴△PDC≌△EDB(SAS).
∴∠ADC=∠BDE.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1若A等于2减根号3,B等于根号3加上2,然后分之1,则A与B的大小关系是
- 25.甲、乙两个工程合开一条670米的隧道同时各从一端开凿,甲对每天开12.6米,乙队每天开14.2米,这条隧道要
- 3已知x^2+y^2-4x-6y+13=0 ,则x+y的值为多少?
- 4限制某个方向的自由度是什么意思
- 5(2010•宿松县三模)等差数列{an}的前n项和为Sn,S9=-18,S13=-52,等比数列{bn}中,b5=a5,b7=a7,则b15的值为( ) A.64 B.-64 C.128 D.-12
- 6求类似于 日久生情 勃大精深 的内涵成语~
- 7长为2,3,5的线段,分别延伸相同长度的线段后,能否组成三角形?若能,它能构成直角三
- 8关于生活中你看到过的帮助老人或敬老,尊重老人的真实作文,900字左右
- 9生活像五彩缤纷的万花筒:………
- 10他顺利地找到了一份好工作如何翻译
热门考点