当前位置: > 如图,P,Q是△ABC的边BC所在的直线上的两点,BP=PQ=QC=AP=AQ,求角BAC的度数....
题目
如图,P,Q是△ABC的边BC所在的直线上的两点,BP=PQ=QC=AP=AQ,求角BAC的度数.

提问时间:2020-10-11

答案
因为AP=PQ=AQ,
所以△APQ是正三角形,
所以∠APQ=∠AQP=∠PAQ=60°
所以∠APB=180°-∠APQ=120°
∠AQC=180°-∠AQP=120°.
又因为BP=AP,AQ=QC,
所以△ABP≌△AQC,且都为等腰三角形.
所以计算可得∠ABP=∠ACB=30°.
因为△ABP≌△AQC,
所以AB=AC,
所以△ABC也是等腰三角形,经计算可得∠BAC=120°.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.