当前位置: > 有4个自然数,它们的和是1111,如果要求这四个数的公约数尽可能大,那么这四个数的公约数最大可能是_....
题目
有4个自然数,它们的和是1111,如果要求这四个数的公约数尽可能大,那么这四个数的公约数最大可能是______.

提问时间:2020-10-11

答案
因为1111=101×11,其约数有1,11,101,1111.显然1111不符合要求,
再考虑约数101,由于1111=101×11=101×(1+2+3+5)=101+101×2+101×3+101×5.
如果取101,101×2,101×3,101×5这4个数,就满足题目的要求其和为1111且他们的最大公约数为101.
(由于11=1+2+3+5=1+1+3+6=…,所以满足条件的4个数并不唯一).
故答案为:101.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.