当前位置: > 已知公差大于0的等差数列{1/an},满足a2a4+a4a6+a6a2=1,a2,a4,a8依次成等比数列,求an的通项公式...
题目
已知公差大于0的等差数列{1/an},满足a2a4+a4a6+a6a2=1,a2,a4,a8依次成等比数列,求an的通项公式

提问时间:2020-10-11

答案
设公差为K
则有an=a0+K(n-1)
所以a2a4+a4a6+a6a2=(a1+k)(a1+3k)+(a1+3k)(a1+5k)+(a1+5k)(a1+k)
得方程:(a1+k)(a1+3k)+(a1+3k)(a1+5k)+(a1+5k)(a1+k)=1
a2,a4,a8依次成等比数列
所以有a2/a4=a4/a8
所以a4^2=a2a8
所以(a1+3k)^2=(a1+k)(a1+7k)
两个方程包含两个未知数,所以可以联立求解
最后求解为a1=k=根下11/22
所以通式为:an=n根下11/22
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.