当前位置: > 已知等差数列{an}是首项a1>1,公比q>0的等比数列,设bn=log2(an)(n属于N+)且b1+b3+b5=6,b1*b3*b5=0...
题目
已知等差数列{an}是首项a1>1,公比q>0的等比数列,设bn=log2(an)(n属于N+)且b1+b3+b5=6,b1*b3*b5=0
(1)求{an}的通项公式;(2)设{bn}的前项n和为Sn,当S1/1+S2/2+...+Sn/n最大时,求n的值

提问时间:2020-10-11

答案
n=log2(an)=log2(a1*q^(n-1))=(n-1)*log2(q)+log2(a1);
b1=log2(a1),b3=2*log2(q)+log2(a1),b5=4*log(q)+log2(a1)
所以{bn}是等差数列,假设公差d=log2(q),
有方程式:
b1+b3+b5=3*b1+6*d=6; ==> b1 != -2d;
b1*b3*b5=b1*(b1+2d)*(b1+4d)=0;
{bn}是等差数列,3*b1+6*d=6; b1=0或b1=-2d或b1=-4d
b1=0不满足a1>1,b1=-2d不满足3*b1+6*d=6;所以b1=-4d,得到d=-1,b1=4
因此a1=16,q=1/2,an=16*((1/2)^(n-1))=32/(2^n)
bn=4-(n-1)=5-n;
Sn=5*n-n*(n+1)/2;
Sn/n=5-(n+1)/2=(9-n)/2;
S1/1+...+Sn/n=(9*n-n(n+1)/2)/2=(17*n-n*n)/4
n=17/2也就是n=8或者9的时候取得最大值18
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.