题目
1+4+9+16+……+n²=n(n+1)(2n+1)/6 怎么推导的?
提问时间:2020-10-11
答案
(n+1)³=n³+3n²+3n+1
(n+1)³-n³=3n²+3n+1
所以
2³-1³=3*1²+3*1+1
3³-2³=3*2²+3*2+1
4³-3³=3*3²+3*3+1
.
(n+1)³-n³=3n²+3n+1
将上述n项相加得
(n+1)³-1³=3*(1²+2²+3²+...+n²)+3*(1+2+3+...n)+n
(n+1)³-1³=3*(1²+2²+3²+...+n²)+3*(1+n)*n /2 +n
(n+1)³-1³-3*(1+n)*n /2 -n=3*(1²+2²+3²+...+n²)
(n+1)³-3*(1+n)*n /2 -(1+n)=3*(1²+2²+3²+...+n²)
(n+1)[(n+1)²-3n/2-1]=3*(1²+2²+3²+...+n²)
(n+1)(n² +n/2)=3*(1²+2²+3²+...+n²)
(n+1)[n(2n+1)/2]=3*(1²+2²+3²+...+n²)
1²+2²+3²+...+n²=(n+1)n(2n+1)/6=n(n+1)(2n+1)/6
(n+1)³-n³=3n²+3n+1
所以
2³-1³=3*1²+3*1+1
3³-2³=3*2²+3*2+1
4³-3³=3*3²+3*3+1
.
(n+1)³-n³=3n²+3n+1
将上述n项相加得
(n+1)³-1³=3*(1²+2²+3²+...+n²)+3*(1+2+3+...n)+n
(n+1)³-1³=3*(1²+2²+3²+...+n²)+3*(1+n)*n /2 +n
(n+1)³-1³-3*(1+n)*n /2 -n=3*(1²+2²+3²+...+n²)
(n+1)³-3*(1+n)*n /2 -(1+n)=3*(1²+2²+3²+...+n²)
(n+1)[(n+1)²-3n/2-1]=3*(1²+2²+3²+...+n²)
(n+1)(n² +n/2)=3*(1²+2²+3²+...+n²)
(n+1)[n(2n+1)/2]=3*(1²+2²+3²+...+n²)
1²+2²+3²+...+n²=(n+1)n(2n+1)/6=n(n+1)(2n+1)/6
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1共价键的类型怎样划分
- 2请问这题如何解答:1997-1/2-1/3-1/4-1/5-……-1/1997
- 31,4,9,( ),25,(). 括号里面的数应该怎么填?有什么规律吗?
- 4These drinks come from France.的同义句是什么?
- 5The bird likes corn.(改否定句)
- 6已知函数f(x)=x2-2x+a,x∈[0,3]的任意三个不同的函数值总可以作为一个三角形的三边长,则实数a的取值范围_.
- 7容积是10L的瓶子装满了煤油,已知煤油的密度是0.8×10^3/m^3,则瓶内煤油的质量是多少千克?
- 8=TEXT(((748+TRUNC(RAND()*10))*10+IF(RAND()>0.5,5,0))/1000,"0.000")解释每段语句的意识
- 9knowledge skill and ability的主题演讲稿
- 10已知三角形的周长是c,其中一边是另一边2倍,则三角形的最小边的范围是( ) A.c6与c4之间 B.c6与c3之间 C.c4与c3之间 D.c3与c2之间
热门考点