题目
三角形ABC中,向量m=(sinB+sinc,0),向量 n=(0,sinA)且(m+n)(m-n)=sinBsinC
(1)求A; (2)求sinB+sinC的取值范围;
(1)求A; (2)求sinB+sinC的取值范围;
提问时间:2020-10-11
答案
(1)∵(m+n)(m-n)=sinBsinC
∴ m²-n²=sinBsinC
即 (sinB+sinC)²-sin²A=sinBsinC
∴ sin²B+sin²C-sin²A=-sinBsinC
由 正弦定理 a/sinA=b/sinB=c/sinC 和
余弦定理 cosA=(b²+c²-a²)/2bc 得
cosA=(sin²B+sin²C-sin²A)/2sinBsinC
∴ cosA=-sinBsinC/2sinBsinC=-1/2
又 角A为△ABC的内角
∴ A=2π/3
(2)由(1),可知
B+C=π/3
则 B=π/3-C
∴ sinB+sinC=sin(π/3-C)+sinC
=sinπ/3cosC-cosπ/3sinC+sinC
=sinπ/3cosC+cosπ/3sinC
=sin(C+π/3)
又 C∈(0,π/3)
∴ (C+π/3)∈(π/3,2π/3)
∴ sin(C+π/3)∈(√3/2,1]
∴ sinB+sinC∈(√3/2,1]
因此 sinB+sinC的取值范围为(√3/2,1]
∴ m²-n²=sinBsinC
即 (sinB+sinC)²-sin²A=sinBsinC
∴ sin²B+sin²C-sin²A=-sinBsinC
由 正弦定理 a/sinA=b/sinB=c/sinC 和
余弦定理 cosA=(b²+c²-a²)/2bc 得
cosA=(sin²B+sin²C-sin²A)/2sinBsinC
∴ cosA=-sinBsinC/2sinBsinC=-1/2
又 角A为△ABC的内角
∴ A=2π/3
(2)由(1),可知
B+C=π/3
则 B=π/3-C
∴ sinB+sinC=sin(π/3-C)+sinC
=sinπ/3cosC-cosπ/3sinC+sinC
=sinπ/3cosC+cosπ/3sinC
=sin(C+π/3)
又 C∈(0,π/3)
∴ (C+π/3)∈(π/3,2π/3)
∴ sin(C+π/3)∈(√3/2,1]
∴ sinB+sinC∈(√3/2,1]
因此 sinB+sinC的取值范围为(√3/2,1]
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1营养学家做了一项研究,甲组同学每天正常进餐,乙组同学除每天正常进餐外,每人还增加六百毫升牛奶.一年后发现,乙组同学平均身高的增长值比甲组同学平均身高的增长值多2.01cm,甲
- 2初一数学同步练5.4问题解决的基本步骤课堂检测第3题,89页,O(∩_∩)O谢谢
- 3八年级上册语文所有的文言文课文原文
- 4A、B到平面α的距离分别为4cm和6cm,则线段AB的中点M到平面α的距离为_.
- 5at first,tom found it difficult to()what his teachers said in class
- 6保温材料为什么能保温?成分有什么?3Q
- 74名男生4名女生站成1排,若男女相间,则有多少种不同站法
- 8若a、b互为相反数,c、d互为倒数,m的绝对值为2,求式子a+b/a+b+c+m-cd的值.
- 9CO2和H2O的混合气体先检验哪一个
- 10如果数轴上的点A到原点的距离是根号2,那么数轴上到点A的距离是2个根号2的点所表示的数有几个?