当前位置: > 设f(x)=ax²+bx+c(a,b,c∈R,a≠0)f(x)在区间[-2,2]上的最大值最小值分别为M,m集合A={x|f(x)≤x}...
题目
设f(x)=ax²+bx+c(a,b,c∈R,a≠0)f(x)在区间[-2,2]上的最大值最小值分别为M,m集合A={x|f(x)≤x}
(1)若A=[1,2],且f(0)=2求M,m
(2)若M+m≠8a+2c,求证|b/a|<4

提问时间:2020-10-11

答案
(1)由题意 f(1)≤1 f(2)≤2 f(0)=2 得到a与b的关系式 c=2 联立解出a,b.进而求出M,m.
(2)因为M+m≠8a+2c,所以,对称轴不在[-2,2]上 ,否则,M+m=f(-2)+f(2)=8a+2c.
所以-b/2a大于2或者小于-2.从而求证.
仅供参考啊,我也不知道这样做对不对,很久没做这类题目了.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.