当前位置: > 关于x的方程kx²+(k+1)x+k/4=0有两个不相等的实数根.是否存在实数k,使方程的两个实数根的倒数和为零...
题目
关于x的方程kx²+(k+1)x+k/4=0有两个不相等的实数根.是否存在实数k,使方程的两个实数根的倒数和为零
若存在,求出k的值;若不存在,请说明理由.

提问时间:2020-10-11

答案
必须满足k≠0且判别式△>0,即:
(k+1)²-4×k×k/4>0
解得:k>-1/2且k≠0
x1+x2=-(k+1)/k=-1-1/k
x1x2=(k/4)/k=1/4
1/x1+1/x2=(x1+x2)/(x1x2)=-(1+1/k)/(1/4)=0
1+1/k=0
k=-1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.