当前位置: > 证明连续型随机变量 X 的特征函数?齯)为实函数的充要条件是:它的密度函数地f(x)是对称的,即f(x)=f(-x)....
题目
证明连续型随机变量 X 的特征函数?齯)为实函数的充要条件是:它的密度函数地f(x)是对称的,即f(x)=f(-x).

提问时间:2020-10-10

答案
即∫(0→+∞)sin(ux)[f(x)-f(-x)]dx=0,所以f(x)-f(-x)=0,即f(x)=f(-x),即f(x)为偶函数.所以,连续型随机变量X的特征函数?齯)为实函数的充要条件是:它的密度函数f(x)是偶函数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.