当前位置: > 已知正四棱锥底面边长为2,侧棱长为√5,求底面与侧面所成二面角...
题目
已知正四棱锥底面边长为2,侧棱长为√5,求底面与侧面所成二面角
顺便再问一个:若A、B两点的坐标分别是A(3cosθ,3sinθ,1),B(2cosα,2sinα,1),则|向量AB|的取值范围是?

提问时间:2020-10-10

答案
解析:
1、如图示,
取AC中点E、BD中点F,连接PE、PF、EF,
∵是正四棱锥,  
∴PA=PB=PC=PD,
∵E、F分别是AC、BD中点,
∴PE⊥AC,PF⊥BD,
且 有 EF‖AB‖CD,EF=AB=CD=2,
∴EF⊥AC,
由二面角定义可知,∠PEF大小即为底面与侧面所成二面角的大小.
∵在△PAC中,PA=PC=√5,AC=2,
∴PE=2,
∴PF=PE=2,
又∵EF=2,
∴在△PEF中,有PE=PF=EF,
∴∠PEF=60°,
即 底面与侧面形成的二面角的大小为60°.
2、向量AB=(2cosα,2sinα,1)-(3cosθ,3sinθ,1)
=(2cosα-3cosθ,2sinα-3sinθ,0)
∴| 向量AB | = √(2cosα-3cosθ)²+(2sinα-3sinθ)²+(0)²
=√[ (4cos²α+9cos²θ-12cosαcosθ)+(4sin²α+9sin²θ-12sinαsinθ) ]
=√ [ 4+9-12(cosαcosθ+sinαsinθ) ]
=√ [ 13-12cos(α-θ) ]
∵cos(α-θ)的范围是 [-1,1]
∴12cos(α-θ)的范围是 [-12,12]
∴13-12cos(α-θ) 的范围是 [1,25]
∴√ [ 13-12cos(α-θ) ]的范围是 [1,5]
即  | 向量AB | 的取值范围是  [1,5] .
希望可以帮到你、
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.