当前位置: > 已知关于x的一元二次方程x²+(2k-3)x-3k+1=0,求证:不论k取何值,次一元二次方程总有两个不相等的实数根....
题目
已知关于x的一元二次方程x²+(2k-3)x-3k+1=0,求证:不论k取何值,次一元二次方程总有两个不相等的实数根.

提问时间:2020-10-10

答案
∵ a=1 ,b=2k-3,c=3k+1
由公式法中△= b²-4ac 得:
(2k-3)²-4×1×(3k+1)=4k^2+5>=5
∴K取任何值都不会比5小
∴一元二次方程总有两个不相等的实数根.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.