当前位置: > 如图,已知P为圆O外一点,PA.PB分别切圆O于A,B,OP与AB相交与点M,C为AB弧上一点,试说明角OPC=角OCM成立的...
题目
如图,已知P为圆O外一点,PA.PB分别切圆O于A,B,OP与AB相交与点M,C为AB弧上一点,试说明角OPC=角OCM成立的

提问时间:2020-10-10

答案
连接OA
因为PA、PB是⊙O的切线
所以OA⊥PA,AB⊥OP
所以可证△OAM∽△OPA
所以OA/OP=OM/OA
由OA=OC得
OC/OP=OM/OC
而∠COP=∠MOC
所以△POC∽△COM
所以∠OPC=∠OCM
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.