当前位置: > 在正三角形ABC中,点D、E分别在BC、AC上,且AE=CD,AD和BE交于P,BQ⊥AD于Q,求证:BP=2PQ...
题目
在正三角形ABC中,点D、E分别在BC、AC上,且AE=CD,AD和BE交于P,BQ⊥AD于Q,求证:BP=2PQ

提问时间:2020-10-10

答案
楼上的证明有误!
“AB=AC
角BAC=角ACB=60度
因为AE=CD
所以三角形BAE全等于三角形ACD ”只在一种情况下是成立的,因为与AE相等的CD有两条.
当然,在CD为另一条的时候,同样可以使用全等的方法来证明.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.