题目
利用拉格朗日中值定理推论 证明恒等式arcsinx+arccosx=π/2(-1≤x≤1)
提问时间:2020-10-10
答案
f(x)=arcsinx+arccosx在[-1,1]连续,在(-1,1)可导,由拉格朗日中值定理 一定在[-1,1]中找到一个c点 使得 f(c)=[f(1)-f(-1)]/(1-(-1)) 又这个式子可以计算得π/2
该定理的推论是:如果函数f(x)在区间I上的导数恒为零,则f(x)在区间I上是一个常数
(arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2
所以f'(x)=0 得证
该定理的推论是:如果函数f(x)在区间I上的导数恒为零,则f(x)在区间I上是一个常数
(arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2
所以f'(x)=0 得证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点