题目
欧拉公式的证明及各方面的应用
提问时间:2020-10-10
答案
e^ix=cosx+isinx,e是自然对数的底,i是虚数单位.它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位. e^ix=cosx+isinx的证明: 因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…… cos x=1-x^2/2!+x^4/4!-x^6/6!…… sin x=x-x^3/3!+x^5/5!-x^7/7!…… 在e^x的展开式中把x换成±ix. (±i)^2=-1,(±i)^3=∓i,(±i)^4=1 …… e^±ix=1±ix/1!-x^2/2!∓ix^3/3!+x^4/4!…… =(1-x^2/2!+……)±i(x-x^3/3!……) 所以e^±ix=cosx±isinx 将公式里的x换成-x,得到: e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式.将e^ix=cosx+isinx中的x取作π就得到: e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率
π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0.数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它.
这种资料很好找吧……
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式.将e^ix=cosx+isinx中的x取作π就得到: e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率
π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0.数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它.
这种资料很好找吧……
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 18/3÷x=16/5解方程
- 2你怎么看待读书这件事
- 3He often swims in the river in s--- 快
- 4如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为_.
- 5帮个忙哈 给解个方程 x (y+32)=126 y+(x-1) 11 =32
- 6如图为人WNK4基因部分碱基序列及其编码蛋白质的部分氨基酸序列示意图.已知WNK4基因发生一种突变,导致1169位赖氨酸变为谷氨酸.该基因发生的突变是( ) A.①处插入碱基对G-C B.②处碱
- 7地震的震级是如何测量和计算出来的?
- 8已知√3/2+i/2是实系数一元二次方程ax2+bx+1=0的一个根
- 9已知y=lg(x^2+2x-a)的值域为R,那么a的范围是
- 10指出下列句子所运用的修辞手法(1)黄土高原啊,你生养了这些元气淋漓
热门考点