当前位置: > 定义在(-1,1)上的函数f(x)= - x^3-sinx,如果f(1-a)+f(1-a^2)>0,则实数a的取值范围为...
题目
定义在(-1,1)上的函数f(x)= - x^3-sinx,如果f(1-a)+f(1-a^2)>0,则实数a的取值范围为
请不要在这里刷分!会的,

提问时间:2020-10-10

答案
f(x)=-x^3-sinx,x(-1,1)
f(-x)=-(-x)^3-sin(-x)
=-f(x)
所以f(x)是奇函数
f'(x)=-3x^2-cosx
-10-3<-3x^2<0
0-3-cos1<-3x^2-cosx<0
所以f(x)在(-1,1)是减函数
f(1-a)+f(1-a^2)>0
f(1-a)>-f(1-a^2)=f(a^2-1)
1-aa^2+a-2>0
(a+2)(a-1)>0
a<-2,a>1
又:
-1<1-a<1
-1-2<-a<0
00-根号2综上,
1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.