当前位置: > 假设3阶矩阵A的特征值为1,2,3,矩阵B=E-2A*,其中,A*是A的伴随矩阵,则B的行列式|B|=?...
题目
假设3阶矩阵A的特征值为1,2,3,矩阵B=E-2A*,其中,A*是A的伴随矩阵,则B的行列式|B|=?

提问时间:2020-10-10

答案
因为A的特征值为1,2,3
所以 |A| = 1*2*3 = 6
所以 A*的特征值为 6/1=6,6/2=3,6/3=2.
所以 E-2A* 的特征值为 1-2*6=-13,1-2*3=-5,1-2*2=-3
所以 B=E-2A* 的行列式 |B|= -13*(-5)*(-3) = -195.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.