当前位置: > 如何证明n阶矩阵A即是正交矩阵又是正定矩阵当且仅当A为单位矩阵?...
题目
如何证明n阶矩阵A即是正交矩阵又是正定矩阵当且仅当A为单位矩阵?

提问时间:2020-10-10

答案
如果A是单位矩阵,则A是正交矩阵也是正定矩阵,这是显然的.如果A既是正交矩阵也是正定矩阵,则A=A'=A逆,所以A^2=E,A的特征值是1或-1.又A正定,特征值都是正的,所以A的特征值都是1.所以A相似于对角矩阵diang(a1,a2,...,an...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.