当前位置: > A,B都为n阶正定矩阵,证明:AB是正定矩阵的充分必要条件是AB=BA....
题目
A,B都为n阶正定矩阵,证明:AB是正定矩阵的充分必要条件是AB=BA.

提问时间:2020-10-10

答案
证明:因为A,B正定,所以 A^T=A,B^T=B
(必要性) 因为AB正定,所以 (AB)^T=AB
所以 BA=B^TA^T=(AB)^T=AB.
(充分性) 因为 AB=BA
所以 (AB)^T=B^TA^T=BA=AB
所以 AB 是对称矩阵.
由A,B正定,存在可逆矩阵P,Q使 A=P^TP,B=Q^TQ.
故 AB = P^TPQ^TQ
而 QABQ^-1=QP^TPQ^T = (PQ)^T(PQ) 正定,且与AB相似
故 AB 正定.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.