当前位置: > 已知f(x)为奇函数,g(x)为偶函数,f(x)、g(x)都在R上,且f(x)+g(x)=ax,(a>0,a≠1),求证:f(2x)=2f(x)g(x)....
题目
已知f(x)为奇函数,g(x)为偶函数,f(x)、g(x)都在R上,且f(x)+g(x)=ax,(a>0,a≠1),求证:f(2x)=2f(x)g(x).

提问时间:2020-10-09

答案
∵f(x)为奇函数,g(x)为偶函数,f(x)、g(x)都在R上,且f(x)+g(x)=ax,①,
∴f(-x)+g(-x)=a-x
即-f(x)+g(x)=a-x,②,
由①②解得f(x)=
axa−x
2
,g(x)=
ax+a−x
2

则2f(x)g(x)=2×
axa−x
2
×
ax+a−x
2
=
a2xa−2x
2
=f(2x),
∴等式成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.