当前位置: > 在直角三角形ABC中,D是斜边BC上的一点,AB=AD,∠CAD=α,∠ABC=β, (1)求sinα+cos2β的值; (2)若AC=3DC,求β的值....
题目
在直角三角形ABC中,D是斜边BC上的一点,AB=AD,∠CAD=α,∠ABC=β,
(1)求sinα+cos2β的值;
(2)若AC=
3
DC,求β的值.

提问时间:2020-10-09

答案
(1)由180°-2β+α=90°得2β-α=90°,∴sinα+cos2β=sinα+cos(90°+α)=0.…(6分)(2)在△ACD中由正弦定理得,AC:DC=sin(180°-β):sinα,又因为AC=3DC,∴sinβ=3sinα,又∵sinα+cos2β=0,∴2s...
(1)由于180°-2β+α=90°,可求得2β=90°+α,利用诱导公式可求得sinα+cos2β;
(2)在△ACD中利用正弦定理可求得sinβ=
3
2
,从而可求得β的值.

正弦定理.

本题考查正弦定理,考查分析与运算能力,求得sinβ=

3
sinα是关键,属于中档题.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.