当前位置: > 三角形ABC中,求证(a2-b2/cosA+cosB)+(b2-c2/cosB+cosC)+(c2-a2/cosC+cosA)=0...
题目
三角形ABC中,求证(a2-b2/cosA+cosB)+(b2-c2/cosB+cosC)+(c2-a2/cosC+cosA)=0

提问时间:2020-10-09

答案
证明:利用正弦定理a/(sina)=b/(sinb)=c/(sinc)=2R,就有:a^2=4R^2sin^2Ab^2=4R^2sin^2Bc^2=4r^2sin^2C(a^2-b^2)=4R^2(sin^2A-sin^2B)=4R^2(1-cos^2A-1+cos^2B)=4R^2(cos^2B-cos^2A)=4R^2(cosA+cosB)(cosB-cosA)……...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.