当前位置: > 设斜率为2的直线l过抛物线y²=2px(p>0)的焦点F,且与y轴交于点A,△OAF(0为坐标原点)的面积为4...
题目
设斜率为2的直线l过抛物线y²=2px(p>0)的焦点F,且与y轴交于点A,△OAF(0为坐标原点)的面积为4
则此抛物线的方程

提问时间:2020-10-09

答案
直线方程可设为y=2(x-p/2),令x=0,得y=p,即A(0,p),△OAF(0为坐标原点)的面积为4,即1/2*OF*OA=4所以1/2*p/2*p=4,故,p=4,抛物线方程为y²=8x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.