题目
已知过抛物y^2=2px的焦点F的直线交抛物线于A(X1,Y1)B(X2,Y2)(1)求证X1X2为定值(2)1/FA+1/FB为定值
提问时间:2020-10-09
答案
1)
AB直线方程为:y=k(x-p/2)
代人:y^2=2px得:
k^2(x-p/2)^2=2px
k^2x^2-(pk^2-2p)x+k^2p^2/4=0
x1x2=p^2/4
是定值
2)
FA^2=(x1-p/2)^2+y1^2
=x1^2-px1+p^2/4+2px1
=x1^2+px1+p^2/4
=(x1+p/2)^2
FA=x1+p/2
同样可得:FB=x2+p/2
1/FA+1/FB
=1/(x1+p/2)+1/(x2+p/2)
=(x1+x2+p)/(x1+p/2)(x2+p/2)
=(x1+x2+p)/(x1x2+p(x1+x2)/2+p^2/4)
=(x1+x2+p)/(p^2/4+p(x1+x2)/2+p^2/4)
=(x1+x2+p)/(p(x1+x2+p)/2)
=2/p
为定值
AB直线方程为:y=k(x-p/2)
代人:y^2=2px得:
k^2(x-p/2)^2=2px
k^2x^2-(pk^2-2p)x+k^2p^2/4=0
x1x2=p^2/4
是定值
2)
FA^2=(x1-p/2)^2+y1^2
=x1^2-px1+p^2/4+2px1
=x1^2+px1+p^2/4
=(x1+p/2)^2
FA=x1+p/2
同样可得:FB=x2+p/2
1/FA+1/FB
=1/(x1+p/2)+1/(x2+p/2)
=(x1+x2+p)/(x1+p/2)(x2+p/2)
=(x1+x2+p)/(x1x2+p(x1+x2)/2+p^2/4)
=(x1+x2+p)/(p^2/4+p(x1+x2)/2+p^2/4)
=(x1+x2+p)/(p(x1+x2+p)/2)
=2/p
为定值
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点