当前位置: > 矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T....
题目
矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T.
证明:A为正交矩阵的充分必要条件是a=2/3 =/是不等于的意思
=/是不等于的意思

提问时间:2020-10-09

答案
一个更正,问题中的“a=2/3”似乎有误,应为“a^Ta=2/3”
首先可知A是一个对称阵,那么AA^T=E就等价于(E-3aa^T)(E-3aa^T)=E,展开就得E-6aa^T+9(a^Ta)(aa^T)=E,进一步合并同类项有:(9a^Ta-6)aa^T=0
如果aa^T为零矩阵,则A=E,就过于特殊,故应不为零矩阵,所以括号内必为零,证毕
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.