当前位置: > 求对坐标的曲面积分∫∫(x^2*y^2*z)dxdy,其中S是球面x^2+y^2+z^2=R^2的下半部分的下侧...
题目
求对坐标的曲面积分∫∫(x^2*y^2*z)dxdy,其中S是球面x^2+y^2+z^2=R^2的下半部分的下侧

提问时间:2020-10-09

答案
用公式直接计算:注意是球面的下侧,所以z=-√R^2-x^2-y^2,化成二重积分时取负号S在xoy面的投影为Dxy:x^2+y^2≤R^2则原式化成二重积分=-∫∫(Dxy上)【x^2*y^2*(-√R^2-x^2-y^2)】dxdy=∫∫(Dxy上)【x^2*y^2*√...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.